黄色视屏在线播放,桃色视频黄在线观看,国产在线观看99,一区二区三区精品免费,国产在线视频在线观看完整版,日韩国产片免费观看,亚洲精品久久久中文字幕九色,亚洲AV日韩AV综合影院,色伦97中文字幕

易教網(wǎng)-北京家教
當(dāng)前城市:北京 [切換其它城市] 
www.eduease.com 請(qǐng)家教熱線:400-6789-353 010-64435636 010-64450797

易教網(wǎng)微信版微信版 APP下載
易教播報(bào)

歡迎您光臨易教網(wǎng),感謝大家一直以來(lái)對(duì)易教網(wǎng)北京家教的大力支持和關(guān)注!我們將竭誠(chéng)為您提供更優(yōu)質(zhì)便捷的服務(wù),打造北京地區(qū)請(qǐng)家教,做家教,找家教的專業(yè)平臺(tái),敬請(qǐng)致電:010-64436939

當(dāng)前位置:家教網(wǎng)首頁(yè) > 家庭教育 > 高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

【來(lái)源:易教網(wǎng) 更新時(shí)間:2025-04-18
高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

篇1:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)1-1知識(shí)點(diǎn)

  第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。

  第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。

  第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高考數(shù)學(xué)七大復(fù)習(xí)要點(diǎn)

  第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二:平面向量和三角函數(shù)

  重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三:數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四:空間向量和立體幾何   在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五:概率和統(tǒng)計(jì)   這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六:解析幾何

  解析幾何是比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,這一類題有以下五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類是動(dòng)點(diǎn)問(wèn)題,第三類是弦長(zhǎng)問(wèn)題,第四類是對(duì)稱問(wèn)題,這也是高考已經(jīng)考過(guò)的一點(diǎn),第五類重點(diǎn)問(wèn)題,這類題時(shí)計(jì)算量十分大。

  第七:壓軸題

  考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講總結(jié):三角函數(shù)

  一、三角函數(shù)

  1.周期函數(shù):一般地,對(duì)于函數(shù)f(x),如果存在一個(gè)不為0的常數(shù)T使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期,把所有周期中存在的最小正數(shù),叫做最小正周期三角函數(shù)屬于高中數(shù)學(xué)中的重點(diǎn)內(nèi)容,在高考理科數(shù)學(xué)中更是占據(jù)很重要的位置。

  2.三角函數(shù)的圖像:可以利用三角函數(shù)線用幾何法作出,在精確度要求不高的情況下,常用五點(diǎn)法作圖,要特別注意“五點(diǎn)”的取法。   3.三角函數(shù)的定義域:三角函數(shù)的定義域是研究其他一切性質(zhì)的前提,求三角函數(shù)的定義域?qū)嶋H上就是解最簡(jiǎn)單的三角不等式,通常可用三角函數(shù)的圖像或三角函數(shù)線來(lái)求解,注意數(shù)形結(jié)合思想的應(yīng)用。

  二、反三角函數(shù)主要是三個(gè):

  y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

  y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍(lán)色線條;

  y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

  sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

  三、三角函數(shù)其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  當(dāng)x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

  當(dāng)x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx類似

  若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

  四、三角函數(shù)與平面向量的綜合問(wèn)題

  (1)巧妙“轉(zhuǎn)化”--把以“向量的數(shù)量積、平面向量共線、平面向量垂直”“向量的線性運(yùn)算”形式出現(xiàn)的條件還其本來(lái)面目,轉(zhuǎn)化為“對(duì)應(yīng)坐標(biāo)乘積之間的關(guān)系”;

  (2)巧挖“條件”--利用隱含條件”正弦函數(shù)、余弦函數(shù)、的有界性“,把不等式的恒成立問(wèn)題轉(zhuǎn)化為含參數(shù)ψ的方程,求出參數(shù)ψ的值,從而可求函數(shù)的解析式;

  (3)活用”性質(zhì)“--活用正弦函數(shù)與余弦函數(shù)的單調(diào)性、對(duì)稱性、周期性、奇偶性,以及整體換元思想,即可求其對(duì)稱軸與單調(diào)區(qū)間。

  五、見(jiàn)三角函數(shù)“對(duì)稱”問(wèn)題,啟用圖象特征代數(shù)關(guān)系:(A≠0)

  1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于過(guò)最值點(diǎn)且平行于y軸的直線分別成軸對(duì)稱;

  2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于其中間零點(diǎn)分別成中心對(duì)稱;

  3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對(duì)稱性質(zhì)。

篇2:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講口訣一

  《集合與函數(shù)》

  內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

  復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

  指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

  函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);

  正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。

  兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;

  求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的值域。

  冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

  奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講口訣二

  《三角函數(shù)》

  三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

  中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,

  頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

  變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

  逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

  萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

  1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集;

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講口訣三

  《不等式》

  解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。

  高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

  證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。

  直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

  還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫(huà)圖建模構(gòu)造法。

  《數(shù)列》

  等差等比兩數(shù)列,通項(xiàng)公式N項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換。

  數(shù)列問(wèn)題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,

  取長(zhǎng)補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:

  一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:

  首先驗(yàn)證再假定,從K向著K加1, 推論過(guò)程須詳盡,歸納原理來(lái)肯定。

篇3:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)常考知識(shí)點(diǎn)

  一、三角函數(shù)

  1.周期函數(shù):一般地,對(duì)于函數(shù)f(x),如果存在一個(gè)不為0的常數(shù)T使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期,把所有周期中存在的最小正數(shù),叫做最小正周期三角函數(shù)屬于高中數(shù)學(xué)中的重點(diǎn)內(nèi)容,在高考理科數(shù)學(xué)中更是占據(jù)很重要的位置。   2.三角函數(shù)的圖像:可以利用三角函數(shù)線用幾何法作出,在精確度要求不高的情況下,常用五點(diǎn)法作圖,要特別注意“五點(diǎn)”的取法。   3.三角函數(shù)的定義域:三角函數(shù)的定義域是研究其他一切性質(zhì)的前提,求三角函數(shù)的定義域?qū)嶋H上就是解最簡(jiǎn)單的三角不等式,通常可用三角函數(shù)的圖像或三角函數(shù)線來(lái)求解,注意數(shù)形結(jié)合思想的應(yīng)用。

  二、反三角函數(shù)主要是三個(gè):

  y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

  y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍(lán)色線條;

  y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

  sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

  三、三角函數(shù)其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  當(dāng)x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

  當(dāng)x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx類似

  若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

  四、三角函數(shù)與平面向量的綜合問(wèn)題

  (1)巧妙“轉(zhuǎn)化”--把以“向量的數(shù)量積、平面向量共線、平面向量垂直”“向量的線性運(yùn)算”形式出現(xiàn)的條件還其本來(lái)面目,轉(zhuǎn)化為“對(duì)應(yīng)坐標(biāo)乘積之間的關(guān)系”;

  (2)巧挖“條件”--利用隱含條件”正弦函數(shù)、余弦函數(shù)、的有界性“,把不等式的恒成立問(wèn)題轉(zhuǎn)化為含參數(shù)ψ的方程,求出參數(shù)ψ的值,從而可求函數(shù)的解析式;

  (3)活用”性質(zhì)“--活用正弦函數(shù)與余弦函數(shù)的單調(diào)性、對(duì)稱性、周期性、奇偶性,以及整體換元思想,即可求其對(duì)稱軸與單調(diào)區(qū)間。

  五、見(jiàn)三角函數(shù)“對(duì)稱”問(wèn)題,啟用圖象特征代數(shù)關(guān)系:(A≠0)

  1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于過(guò)最值點(diǎn)且平行于y軸的直線分別成軸對(duì)稱;

  2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于其中間零點(diǎn)分別成中心對(duì)稱;

  3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對(duì)稱性質(zhì)。

  高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

  高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)講解:直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)講解:直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。在高中數(shù)學(xué)里直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

  ②過(guò)兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):

  (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);

  (3)以后高中數(shù)學(xué)涉及到求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)講解:直線方程

  ①點(diǎn)斜式:

  直線斜率k,且過(guò)點(diǎn)

  注意:高中數(shù)學(xué)在關(guān)于直線方程解法中,當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

  ②斜截式:,直線斜率為k,直線在y軸上的截距為b

  ③兩點(diǎn)式:()直線兩點(diǎn),

  ④截矩式:

  其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

  ⑤一般式:(A,B不全為0)

  ⑤一般式:(A,B不全為0)

  注意:○1各式的適用范圍

  ○2特殊的方程如:平行于x軸的直線:

  (b為常數(shù));平行于y軸的直線:

  (a為常數(shù));

  高考數(shù)學(xué)的答題順序是什么

  高考數(shù)學(xué)的答題順序:先易后難

  就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過(guò)啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

  高考數(shù)學(xué)的答題順序:先熟后生

  通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過(guò)這種暗示,確保情緒穩(wěn)定,對(duì)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。

  高考數(shù)學(xué)的答題順序:先同后異

  先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過(guò)急、過(guò)頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力。

  小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過(guò),應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗   高考數(shù)學(xué)的答題順序:先點(diǎn)后面

  近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面6.先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。

篇4:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考文科數(shù)學(xué)知識(shí)點(diǎn)

  1.對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。

  中元素各表示什么?

  注重借助于數(shù)軸和文氏圖解集合問(wèn)題。

  空集是一切集合的子集,是一切非空集合的真子集。

  2.你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)的取值范圍。

  3.命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價(jià)命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  3.對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

  (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

  4.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

  (定義域、對(duì)應(yīng)法則、值域)

  3.注意下列性質(zhì):

  (3)德摩根定律:

  高考文科生學(xué)好數(shù)學(xué)具體做法

  一是參加補(bǔ)習(xí)班

  這是對(duì)學(xué)校教學(xué)的有益補(bǔ)充,可以是一對(duì)一的家教,也可以是4-8人的小班化的補(bǔ)差補(bǔ)缺。如果人數(shù)過(guò)多,效果就會(huì)大打折扣。

  二是同學(xué)間的相互學(xué)習(xí)

  包括日常學(xué)習(xí)中所學(xué)知識(shí)的及時(shí)探討、交流,比如學(xué)到投影畫(huà)圖這一新知識(shí)的時(shí)候,針對(duì)沒(méi)有學(xué)會(huì)或是一知半解的內(nèi)容,就可以利用課間或是其他時(shí)間即時(shí)問(wèn)同學(xué),這樣可以隨時(shí)隨地地排疑解難,以便當(dāng)天問(wèn)題當(dāng)天解決。

  三是求助科任教師

  在每節(jié)課的學(xué)習(xí)與做作業(yè)的時(shí)候,一旦有不懂的地方,就通過(guò)當(dāng)面求助與電話、短信、郵件、qq等不同方式,將學(xué)習(xí)困難與問(wèn)題加以及時(shí)化解,做到不恥下問(wèn),這也是文科學(xué)生學(xué)好數(shù)學(xué)的寶貴經(jīng)驗(yàn)。

  高考文科生數(shù)學(xué)復(fù)習(xí)需要注意的問(wèn)題

  第一,不要眼高手低。有些文科生的同學(xué)在復(fù)習(xí)數(shù)學(xué)的時(shí)候總是眼高手低,基礎(chǔ)的知識(shí)覺(jué)得自己會(huì)了,所以一些涉及到基礎(chǔ)知識(shí)的小題就不愿意去做,但是做難題和偏題的時(shí)候又沒(méi)有足夠的能力,這樣不從基礎(chǔ)下手,而是總想著去研究偏難題,這樣的做法只會(huì)讓文科生陷入一個(gè)惡性循環(huán)中,一方面基礎(chǔ)知識(shí)不牢固,小題要失分,另一方面難題偏題也不會(huì),大題要失分,結(jié)果就是總體的成績(jī)上不去。

  第二,知識(shí)網(wǎng)絡(luò)的構(gòu)建。數(shù)學(xué)這是一門(mén)知識(shí)點(diǎn)之間聯(lián)系比較緊密的一門(mén)學(xué)科,有時(shí)候一道問(wèn)題里面會(huì)考查文科生不同的知識(shí)點(diǎn),所以一定要把數(shù)學(xué)不同的知識(shí)點(diǎn)很好的構(gòu)建在一起。

  第三,有針對(duì)性的訓(xùn)練。在數(shù)學(xué)復(fù)習(xí)中,文科生沒(méi)有必要去鉆研偏題和難題,主抓基礎(chǔ),在抓基礎(chǔ)的同時(shí)找到自己在某一個(gè)或者兩個(gè)的弱勢(shì)章節(jié),找到自己的不足,這樣才能夠在數(shù)學(xué)復(fù)習(xí)中很好的鞏固和提升自己的弱勢(shì),數(shù)學(xué)復(fù)習(xí)的本身就是希望文科生能夠在復(fù)習(xí)中找到自己的薄弱環(huán)節(jié),并且彌補(bǔ)上來(lái),這樣為后面進(jìn)行更深度的復(fù)習(xí)打好基礎(chǔ)。

  數(shù)學(xué)對(duì)于大部分的文科上來(lái)說(shuō)是比較頭疼的,因?yàn)楸緛?lái)文科生在初中的時(shí)候基礎(chǔ)就沒(méi)有打好,所以在高中接觸到更高一層次的知識(shí)的時(shí)候,會(huì)覺(jué)得更加的困難,所以文科生在數(shù)學(xué)復(fù)習(xí)中,一定要抓好基礎(chǔ),把自己的弱勢(shì)提升起來(lái)。

篇5:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

篇5:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

  第一,函數(shù)與導(dǎo)數(shù)。高考數(shù)學(xué)主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考數(shù)學(xué)的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。第三,數(shù)列及其應(yīng)用。這部分是高考數(shù)學(xué)的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考數(shù)學(xué)的重點(diǎn)和難點(diǎn)。

  第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬高考數(shù)學(xué)應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考數(shù)學(xué)的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高中常用數(shù)學(xué)知識(shí)點(diǎn)

  斜率定義

  斜率用來(lái)量度斜坡的斜度,由一條直線與X軸正方向所成角的正切。

  1、設(shè)直線傾斜角為α斜率為k,k=tanα=y/x

  2、設(shè)已知點(diǎn)為(a,b)未知點(diǎn)為(x,y)k=(y-b)/(x-a)

  3、導(dǎo)數(shù):曲線上某一點(diǎn)的導(dǎo)數(shù)值為該點(diǎn)在這條曲線上切線的斜率

  斜率公式

  當(dāng)直線L的斜率存在時(shí),斜截式y(tǒng)=kx+b,當(dāng)x=0時(shí)y=b

  當(dāng)直線L的斜率存在時(shí),點(diǎn)斜式y(tǒng)2-y1=k(x2-x1),

  當(dāng)直線L在兩坐標(biāo)軸上存在非零截距時(shí),有截距式x/a+y/b=1

  對(duì)于任意函數(shù)上任意一點(diǎn),其斜率等于其切線與x軸正方向所成的角,即k=tanα

  斜率計(jì)算:ax+by+c=0中,k=-a/b

  直線斜率公式:k=(y2-y1)/(x2-x1)

  兩條垂直相交直線的斜率相乘積為-1:k1*k2=-1.

  曲線y=f(x)在點(diǎn)(x1,f(x1))處的斜率就是函數(shù)f(x)在點(diǎn)x1處的導(dǎo)數(shù)

  高考數(shù)學(xué)怎樣復(fù)習(xí)

  1.對(duì)高考數(shù)學(xué)的認(rèn)知。由于成績(jī)長(zhǎng)期沒(méi)有提升,很多學(xué)生覺(jué)得數(shù)學(xué)本身就難,而自己不具備某種天賦、某種方法,對(duì)自己?jiǎn)适判模@樣很容易挫傷學(xué)習(xí)數(shù)學(xué)的積極性。

  2.備考的方向。很多考生在高考數(shù)學(xué)復(fù)習(xí)階段進(jìn)行“題海戰(zhàn)術(shù)”,每天面對(duì)大量的習(xí)題,結(jié)果成績(jī)沒(méi)有提升。也有一些考生走向了另一個(gè)極端,很少做題,他們覺(jué)得自己很聰明,應(yīng)該能學(xué)好數(shù)學(xué),結(jié)果拿到試卷后,覺(jué)得生疏,在短時(shí)間內(nèi)很難把題目做好。這兩類考生都屬于備考方向的問(wèn)題。

  3.訓(xùn)練方式。高考數(shù)學(xué)備考中學(xué)習(xí)和考試既有區(qū)別又有聯(lián)系,現(xiàn)實(shí)中學(xué)習(xí)努力的學(xué)生不一定會(huì)考試,會(huì)考試的學(xué)生不一定努力學(xué)習(xí)。無(wú)論會(huì)不會(huì)考試,想把試考好,對(duì)于絕大多數(shù)考生來(lái)講,還是需要合理的訓(xùn)練。在平時(shí)訓(xùn)練中需要注重這些關(guān)鍵詞:時(shí)間分配、正確率、題型以及相關(guān)的解題方法、步驟等等。

篇6:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考文綜數(shù)學(xué)知識(shí)點(diǎn)

  第一,函數(shù)與導(dǎo)數(shù)   主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。   第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用   這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。   第三,數(shù)列及其應(yīng)用   這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。   第四,不等式   主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。   第五,概率和統(tǒng)計(jì)   這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。   第六,空間位置關(guān)系的定性與定量分析   主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。   第七,解析幾何   高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高考文科數(shù)學(xué)高頻必考考點(diǎn)

  第一部分:選擇與填空

  1.集合的基本運(yùn)算(含新定集合中的運(yùn)算,強(qiáng)調(diào)集合中元素的互異性);

  2.常用邏輯用語(yǔ)(充要條件,全稱量詞與存在量詞的判定);

  3.函數(shù)的概念與性質(zhì)(奇偶性、對(duì)稱性、單調(diào)性、周期性、值域最大值最小值);

  4.冪、指、對(duì)函數(shù)式運(yùn)算及圖像和性質(zhì)

  5.函數(shù)的零點(diǎn)、函數(shù)與方程的遷移變化(通常用反客為主法及數(shù)形結(jié)合思想);

  6.空間體的三視圖及其還原圖的表面積和體積;

  7.空間中點(diǎn)、線、面之間的位置關(guān)系、空間角的計(jì)算、球與多面體外接或內(nèi)切相關(guān)問(wèn)題;

  8.直線的斜率、傾斜角的確定;直線與圓的位置關(guān)系,點(diǎn)線距離公式的應(yīng)用;

  9.算法初步(認(rèn)知框圖及其功能,根據(jù)所給信息,幾何數(shù)列相關(guān)知識(shí)處理問(wèn)題);

  10.古典概型,幾何概型理科:排列與組合、二項(xiàng)式定理、正態(tài)分布、統(tǒng)計(jì)案例、回歸直線方程、獨(dú)立性檢驗(yàn);文科:總體估計(jì)、莖葉圖、頻率分布直方圖; 11.三角恒等變形(切化弦、升降冪、輔助角公式);三角求值、三角函數(shù)圖像與性質(zhì);

  12.向量數(shù)量積、坐標(biāo)運(yùn)算、向量的幾何意義的應(yīng)用;

  13.正余弦定理應(yīng)用及解三角形;

  14.等差、等比數(shù)列的性質(zhì)應(yīng)用、能應(yīng)用簡(jiǎn)單的地推公式求其通項(xiàng)、求項(xiàng)數(shù)、求和;

  15.線性規(guī)劃的應(yīng)用;會(huì)求目標(biāo)函數(shù);

  16.圓錐曲線的性質(zhì)應(yīng)用(特別是會(huì)求離心率);

  17.導(dǎo)數(shù)的幾何意義及運(yùn)算、定積分簡(jiǎn)單求法

  18.復(fù)數(shù)的概念、四則運(yùn)算及幾何意義;

  19.抽象函數(shù)的識(shí)別與應(yīng)用;

  第二部分:解答題

  第17題:向量與三角交匯問(wèn)題,解三角形,正余弦定理的實(shí)際應(yīng)用;

  第18題:(文)概率與統(tǒng)計(jì)(概率與統(tǒng)計(jì)相結(jié)合型)

  (理)離散型隨機(jī)變量的概率分布列及其數(shù)字特征;

  第19題:立體幾何

  ①證線面平行垂直;面與面平行垂直

  ②求空間中角(理科特別是二面角的求法)

  ③求距離(理科:動(dòng)態(tài)性)空間體體積;

  第20題:解析幾何(注重思維能力與技巧,減少計(jì)算量)

  ①求曲線軌跡方程(用定義或待定系數(shù)法)

  ②直線與圓錐曲線的關(guān)系(靈活運(yùn)用點(diǎn)差法和弦長(zhǎng)公式)

  ③求定點(diǎn)、定值、最值,求參數(shù)取值的問(wèn)題;

  第21題:函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用

  這是一道典型應(yīng)用知識(shí)網(wǎng)絡(luò)的交匯點(diǎn)設(shè)計(jì)的試題,是考查考生解題能力和文科數(shù)學(xué)素質(zhì)為目標(biāo)的壓軸題。

  主要考查:分類討論思想;化歸、轉(zhuǎn)化、遷移思想;整體代換、分與合思想

  一般設(shè)計(jì)三問(wèn):

  ①求待定系數(shù),利用求導(dǎo)討論確定函數(shù)的單調(diào)性;

  ②求參變數(shù)取值或函數(shù)的最值;

  ③探究性問(wèn)題或證不等式恒成立問(wèn)題。

  第22題:三選一:

  (1)幾何證明主要考查三角形相似,圓的切割線定理,證明成比例,求角度,求長(zhǎng)度;利用射影定理解決圓中計(jì)算和證明問(wèn)題是歷年高考題的熱點(diǎn);

  (2)坐標(biāo)系與參數(shù)方程,主要抓兩點(diǎn):參數(shù)方程、極坐標(biāo)方程互化為普通方程;有參數(shù)、極坐標(biāo)方程求解曲線的基本量。這類題,思路清晰,難度不大,抓基礎(chǔ),不做難題。

  (3)不等式選講:絕對(duì)值不等式與函數(shù)結(jié)合型。設(shè)計(jì)上為:①解含有參變數(shù)關(guān)于x的不等式;②求解不等式恒成立時(shí)參變數(shù)的取值;③證明不等式(利用均值定理、放縮法等)。

  高考數(shù)學(xué)復(fù)習(xí)策略

  找出不足之處,鞏固熟練知識(shí)

  高考數(shù)學(xué)沖刺階段,留給考生的時(shí)間已經(jīng)不多了,高考的鐘聲已然敲響,很多考生可能會(huì)有些忙亂,到底我該做什么?其實(shí)數(shù)學(xué)沖刺階段,最應(yīng)該做的就是找出自己在答題或者心理素質(zhì)方面的不足,并且加以彌補(bǔ),高考數(shù)學(xué)沖刺階段想要再多看一套題,或者是掌握某個(gè)知識(shí)點(diǎn),但實(shí)際上變得越來(lái)越緊迫,因?yàn)楦呖剂艚o考生的時(shí)間不多。

  所以找出自己的不足之處加以彌補(bǔ),翻閱書(shū)本熟練一些專業(yè)術(shù)語(yǔ)、符號(hào)、數(shù)字以及過(guò)程步驟等的應(yīng)用,并且鞏固自己已經(jīng)熟練的知識(shí),是高考數(shù)學(xué)沖刺階段最應(yīng)該做的。

  規(guī)范答題,做好時(shí)間規(guī)劃

  每年高考,總會(huì)有一些考生因?yàn)檫@樣那樣的原因沒(méi)有運(yùn)用好數(shù)學(xué)答題時(shí)間,使得自己的高考數(shù)學(xué)答題抱有遺憾。其實(shí)在高考數(shù)學(xué)沖刺階段,考生也需要注意自己對(duì)答題時(shí)間的分配。在前期的數(shù)學(xué)復(fù)習(xí)階段中,各類的測(cè)驗(yàn)和考試較多,考生可以在最后的階段總結(jié)經(jīng)驗(yàn),更好地分配自己的高考數(shù)學(xué)答題時(shí)間。同時(shí),也要注意保證規(guī)范的書(shū)寫(xiě),目前,高考都是以網(wǎng)上閱卷的形式進(jìn)行閱卷,所以對(duì)書(shū)寫(xiě)的要求是比較高的,考生一定要養(yǎng)成良好的書(shū)寫(xiě)習(xí)慣,不要因小失大。

  調(diào)整心態(tài),自信迎接高考

  高考數(shù)學(xué)沖刺階段最重要的,是調(diào)整好自己的心態(tài)。數(shù)學(xué)復(fù)習(xí)階段各種各樣的考試都比較多,很多考生都會(huì)意識(shí)到自己的一些不足之處,也會(huì)有部分考生會(huì)因?yàn)闇y(cè)驗(yàn)或者考試的成績(jī)而失去信心,將成績(jī)與自己的學(xué)習(xí)水平甚至將來(lái)的高考數(shù)學(xué)成績(jī)進(jìn)行比較,會(huì)有考生因此對(duì)自己產(chǎn)生懷疑,憑空給自己增添心理壓力。所以在最后的高考數(shù)學(xué)階段,要學(xué)會(huì)調(diào)整心態(tài),要對(duì)自己有信心,這樣才能更好地迎接高考,才能在六月山花爛漫的時(shí)候,為自己筑造更好的未來(lái)。

篇7:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  全國(guó)卷高考數(shù)學(xué)核心知識(shí)點(diǎn)精講一

  必修一:1、集合與函數(shù)的概念 (這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)   必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線面角和面面角

  這部分知識(shí)是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22---27分

  2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,理科占到15分,文科數(shù)學(xué)占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來(lái)考查

  2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽(tīng)課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

  全國(guó)卷高考數(shù)學(xué)核心知識(shí)點(diǎn)精講二

  數(shù)學(xué)知識(shí)點(diǎn)歸納整理:函數(shù)方程

  1.函數(shù)思想:把某變化過(guò)程中的一些相互制約的變量用函數(shù)關(guān)系表達(dá)出來(lái),并研究這些量間的相互制約關(guān)系,最后解決問(wèn)題,這就是函數(shù)思想;

  2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個(gè)步驟:(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問(wèn)題轉(zhuǎn)化為相應(yīng)的函數(shù)問(wèn)題;(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識(shí)解決問(wèn)題;(3)方程思想:在某變化過(guò)程中,往往需要根據(jù)一些要求,確定某些變量的值,這時(shí)常常列出這些變量的方程或(方程組),通過(guò)解方程(或方程組)求出它們,這就是方程思想;

  3.函數(shù)與方程是兩個(gè)有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問(wèn)題需要用函數(shù)的知識(shí)和方法解決,很多函數(shù)的問(wèn)題也需要用方程的方

  的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。

  全國(guó)卷高考數(shù)學(xué)核心知識(shí)點(diǎn)精講三

  數(shù)學(xué)基本不等式知識(shí)點(diǎn)

  數(shù)學(xué)知識(shí)點(diǎn)1.不等式性質(zhì)比較大小方法:

  (1)作差比較法(2)作商比較法

  不等式的基本性質(zhì)

  ①對(duì)稱性:a > bb > a

  ②傳遞性: a > b, b > ca > c

  ③可加性: a > b a + c > b + c

  ④可積性: a > b, c > 0ac > bc

  ⑤加法法則: a > b, c > d a + c > b + d

  ⑥乘法法則:a > b > 0, c > d > 0 ac > bd

  ⑦乘方法則:a > b > 0, an > bn (n∈N)

  ⑧開(kāi)方法則:a > b > 0

篇8:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講總結(jié)精華一

  一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數(shù)

  對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講總結(jié)精華二

  三、數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  五、概率和統(tǒng)計(jì)

  概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。

  高考數(shù)學(xué)核心知識(shí)點(diǎn)精講總結(jié)精華三

  六、解析幾何

  這部分內(nèi)容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類問(wèn)題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問(wèn)題;第三類是弦長(zhǎng)問(wèn)題;第四類是對(duì)稱問(wèn)題;第五類重點(diǎn)問(wèn)題,這類題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準(zhǔn)確度。   七、壓軸題

  同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。

  高考數(shù)學(xué)直線方程知識(shí)點(diǎn):什么是直線方程

  從平面解析幾何的角度來(lái)看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線平行;有無(wú)窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與 X 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來(lái)表示平面上直線(對(duì)于X軸)的傾斜程度。可以通過(guò)斜率來(lái)判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

篇9:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

篇9:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)基礎(chǔ)知識(shí)

  函數(shù)的圖象

  函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問(wèn)題的意識(shí).

  求作圖象的函數(shù)表達(dá)式

  與f(x)的關(guān)系

  由f(x)的圖象需經(jīng)過(guò)的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個(gè)單位

  y=f(x±a)(a>0)

  沿x軸向平移a個(gè)單位

  y=-f(x)

  作關(guān)于x軸的對(duì)稱圖形

  y=f(|x|)

  右不動(dòng)、左右關(guān)于y軸對(duì)稱

  y=|f(x)|

  上不動(dòng)、下沿x軸翻折

  y=f-1(x)

  作關(guān)于直線y=x的對(duì)稱圖形

  y=f(ax)(a>0)

  橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變

  y=af(x)

  縱坐標(biāo)伸長(zhǎng)到原來(lái)的|a|倍,橫坐標(biāo)不變

  y=f(-x)

  作關(guān)于y軸對(duì)稱的圖形

  高考數(shù)學(xué)知識(shí)口訣

  【三角函數(shù)】

  三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。

  函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡(jiǎn)證明都需要。

  正六邊形頂點(diǎn)處,從上到下弦切割;

  中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;

  向下三角平方和,倒數(shù)關(guān)系是對(duì)角,

  頂點(diǎn)任意一函數(shù),等于后面兩根除。

  誘導(dǎo)公式就是好,負(fù)化正后大化小,

  變成稅角好查表,化簡(jiǎn)證明少不了。

  二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號(hào)原來(lái)函數(shù)判。

  兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。

  和差化積須同名,互余角度變名稱。

  計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,

  保持基本量不變,繁難向著簡(jiǎn)易變。

  逆反原則作指導(dǎo),升冪降次和差積。

  條件等式的證明,方程思想指路明。

  萬(wàn)能公式不一般,化為有理式居先。

  公式順用和逆用,變形運(yùn)用加巧用;

  1加余弦想余弦,1 減余弦想正弦,

  冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,

  先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,

  簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集;

  【不等式】

  解不等式的途徑,利用函數(shù)的性質(zhì)。

  對(duì)指無(wú)理不等式,化為有理不等式。

  高次向著低次代,步步轉(zhuǎn)化要等價(jià)。

  數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

  證不等式的方法,實(shí)數(shù)性質(zhì)威力大。

  求差與0比大小,作商和1爭(zhēng)高下。

  直接困難分析好,思路清晰綜合法。

  非負(fù)常用基本式,正面難則反證法。

  還有重要不等式,以及數(shù)學(xué)歸納法。

  圖形函數(shù)來(lái)幫助,畫(huà)圖建模構(gòu)造法。

  高考數(shù)學(xué)知識(shí)重點(diǎn)

  (一)、映射、函數(shù)、反函數(shù)

  1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.

  2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

  (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

  注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

  ②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算.

  (二)、函數(shù)的解析式與定義域

  1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

  (1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;   (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

  ①分式的分母不得為零;

  ②偶次方根的被開(kāi)方數(shù)不小于零;

  ③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

  ④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

  應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).

  (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.

  2、求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.

  (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

  (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

篇10:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

高考數(shù)學(xué)復(fù)習(xí)必備知識(shí)點(diǎn)總結(jié)

對(duì)于很多高考數(shù)學(xué)成績(jī)差的學(xué)生來(lái)說(shuō),學(xué)習(xí)高考數(shù)學(xué)就是一種折磨。下面有途網(wǎng)小編很大家分享了高考數(shù)學(xué)必備知識(shí)點(diǎn),歡迎閱讀。

高考數(shù)學(xué)必備知識(shí)點(diǎn)

任意角α與 -α的三角函數(shù)值之間的關(guān)系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

經(jīng)典高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做題時(shí),將a看成銳角來(lái)做會(huì)比較好做。

高三必備高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

誘導(dǎo)公式可以概括為:

對(duì)于π/2*k ±α(k∈Z)的三角函數(shù)值,

①當(dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;

②當(dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇變偶不變)

然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào)。

(符號(hào)看象限)

高考數(shù)學(xué)答題方法規(guī)律

1。函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。

2。如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;

3。面對(duì)含有參數(shù)的初等函數(shù)來(lái)說(shuō),在研究的時(shí)候應(yīng)該抓住參數(shù)沒(méi)有影響到的不變的性質(zhì)。如所過(guò)的定點(diǎn),二次函數(shù)的對(duì)稱軸或是……;

4。選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法。

篇11:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

高考數(shù)學(xué)必看題型知識(shí)點(diǎn)

對(duì)于高考數(shù)學(xué)來(lái)說(shuō),該如何快速提高分?jǐn)?shù)呢?首先就需要積累一些高考數(shù)學(xué)的高頻考點(diǎn),并且需要看一些重點(diǎn)的知識(shí)點(diǎn),下面有途網(wǎng)小編為大家整理了一些。

數(shù)學(xué)高頻考點(diǎn)總結(jié)

1. 掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

2. 理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

3. 理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

4. 掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問(wèn)題。

5. 了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。

6. 了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。

7. 了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。

8. 會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.

1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2. 判定兩個(gè)平面平行的方法:

(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);

(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

(3)證明兩平面同垂直于一條直線。

1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識(shí)和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問(wèn)題;

2. 在解決綜合題和探索性問(wèn)題實(shí)踐中加深對(duì)基礎(chǔ)知識(shí)、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識(shí),溝通各類知識(shí)的聯(lián)系,形成更完整的知識(shí)網(wǎng)絡(luò),提高分析問(wèn)題和解決問(wèn)題的能力,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。

3. 培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問(wèn)方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問(wèn)題的自覺(jué)性、培養(yǎng)學(xué)生主動(dòng)探索的精神和科學(xué)理性的思維方法.

1. 導(dǎo)數(shù)概念的理解。

2. 利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問(wèn)題的最大值與最小值。復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過(guò)實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來(lái)對(duì)法則進(jìn)行了證明。

3. 要能正確求導(dǎo),必須做到以下兩點(diǎn):

(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。

(2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。

1、很多高考問(wèn)題都是以平面上的點(diǎn)、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問(wèn)題;

2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說(shuō)就是列方程、解方程的規(guī)則。

高考數(shù)學(xué)核心知識(shí)點(diǎn)精講問(wèn)題總結(jié)整理

1、進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解、

2、在應(yīng)用條件時(shí),易A忽略是空集的情況

3、你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?

4、簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

5、你知道“否命題”與“命題的否定形式”的區(qū)別、

6、求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則、

7、判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱、

8、求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域、

9、原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)、例如:、

10、你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

11、 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示、

12、求函數(shù)的值域必須先求函數(shù)的定義域。

13、如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問(wèn)題)、這幾種基本應(yīng)用你掌握了嗎?

14、解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

15、三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

16、用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

篇12:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  集合與簡(jiǎn)單邏輯

  1.易錯(cuò)點(diǎn)遺忘空集致誤

  錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B,就有B=A,φ≠B,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。空集是一個(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。

  2.易錯(cuò)點(diǎn)忽視集合元素的三性致誤

  錯(cuò)因分析:集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。

  3.易錯(cuò)點(diǎn)四種命題的結(jié)構(gòu)不明致誤

  錯(cuò)因分析:如果原命題是“若A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。

  這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫(xiě)出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。

  另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a,b都是奇數(shù)”。

  4.易錯(cuò)點(diǎn)充分必要條件顛倒致誤

  錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問(wèn)題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

  5.易錯(cuò)點(diǎn)邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤

  錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對(duì)大家有所幫助:

  p∨q真<=>p真或q真,

  p∨q假<=>p假且q假(概括為一真即真);

  p∧q真<=>p真且q真,

  p∧q假<=>p假或q假(概括為一假即假);

  ┐p真<=>p假,┐p假<=>p真(概括為一真一假)。

  函數(shù)與導(dǎo)數(shù)

  6.易錯(cuò)點(diǎn)求函數(shù)定義域忽視細(xì)節(jié)致誤

  錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):

  (1)分母不為0;

  (2)偶次被開(kāi)放式非負(fù);

  (3)真數(shù)大于0;

  (4)0的0次冪沒(méi)有意義。

  函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

  7.易錯(cuò)點(diǎn)帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤

  錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:

  一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;

  二是畫(huà)出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問(wèn)題離不開(kāi)函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。

  對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  8.易錯(cuò)點(diǎn)求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤

  錯(cuò)因分析:求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。

  在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。

  9.易錯(cuò)點(diǎn)抽象函數(shù)中推理不嚴(yán)密致誤

  錯(cuò)因分析:很多抽象函數(shù)問(wèn)題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。

  解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。

  抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫(xiě)規(guī)范。

  10.易錯(cuò)點(diǎn)函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。

  函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。

  11.易錯(cuò)點(diǎn)混淆兩類切線致誤

  錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類型的切線。

  12.易錯(cuò)點(diǎn)混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

  錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。

  研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  13.易錯(cuò)點(diǎn)導(dǎo)數(shù)與極值關(guān)系不清致誤

  錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。

  出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。

  數(shù)列

  14.易錯(cuò)點(diǎn)用錯(cuò)基本公式致誤

  錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。

  15.易錯(cuò)點(diǎn)an,Sn關(guān)系不清致誤

  錯(cuò)因分析:在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:

  這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

  當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過(guò)數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。

  16.易錯(cuò)點(diǎn)對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤

  錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。

  一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。

  解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問(wèn)題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問(wèn)題時(shí)要注意這個(gè)特殊情況。

  17.易錯(cuò)點(diǎn)數(shù)列中的最值錯(cuò)誤

  錯(cuò)因分析:數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。

  但是考生很容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對(duì)于n取何值時(shí),能夠取到最值求解出錯(cuò)。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸遠(yuǎn)近而定。

  18.易錯(cuò)點(diǎn)錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)致誤

  錯(cuò)因分析:錯(cuò)位相減求和法的適用環(huán)境是:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和。基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,得到的和式要分三個(gè)部分:

  (1)原來(lái)數(shù)列的第一項(xiàng);

  (2)一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和;

  (3)原來(lái)數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。在用錯(cuò)位相減法求數(shù)列的和時(shí)一定要注意處理好這三個(gè)部分,否則就會(huì)出錯(cuò)。

篇13:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

篇13:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

  高考數(shù)學(xué)容易丟分的知識(shí)點(diǎn)

  1、在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  2、判斷函數(shù)奇偶性忽略定義域致誤   判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。

  3、函數(shù)零點(diǎn)定理使用不當(dāng)致誤   如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題。

  4、三角函數(shù)的單調(diào)性判斷致誤   對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  5、忽視零向量致誤   零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

  高考數(shù)學(xué)重要知識(shí)點(diǎn)之幾何

  公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)在此平面內(nèi)。

  公理2:過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

  公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。

  公理4:平行于同一條直線的兩條直線互相平行。

  定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ)。

  判定定理1:如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行 “線面平行”。

  判定定理2:如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行“面面平行”。

  判定定理3:如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直“線面垂直”。

  判定定理4:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面互相垂直“面面垂直”。

  高考數(shù)學(xué)答題技巧

  合理分配數(shù)學(xué)答題時(shí)間

  大家都知道,高考數(shù)學(xué)考試分為選擇題、填空題、解答題三大部分,由于三部分所占的分?jǐn)?shù)份額不同,難度不同,考生可以就自己平時(shí)的速度,將這三者的答題時(shí)間合理分配。這三個(gè)部分,相對(duì)來(lái)說(shuō),高考數(shù)學(xué)選擇題是可以通過(guò)排除法、答案代入法、任意數(shù)字代入法等方式得到答案,需要的時(shí)間也相對(duì)較少,填空題的計(jì)算過(guò)程通常不會(huì)太復(fù)雜,每個(gè)空格所占的分?jǐn)?shù)也不會(huì)很高,因此,高考中要適當(dāng)?shù)貙r(shí)間留給更好做數(shù)學(xué)解答題。

  做題選擇由簡(jiǎn)到難的方式

  高考考生們,想要在高考中取得高分,切記遇到難題不愿意、不甘心放棄,要懂得適當(dāng)?shù)赜鼗貞?zhàn)術(shù),遇到難題先將其略過(guò),等到其他題目都完成以后,利用剩下的時(shí)間再慢慢研究,避免得不償失的狀況出現(xiàn),還可以節(jié)省時(shí)間,分配出高考數(shù)學(xué)難題答題時(shí)間。并且,數(shù)學(xué)解答題每寫(xiě)出一個(gè)步驟,所得到的分?jǐn)?shù),都遠(yuǎn)遠(yuǎn)可能高于一道數(shù)學(xué)選擇題或者填空題的分?jǐn)?shù),因此,做題也要分清輕重。

  養(yǎng)成檢查的好習(xí)慣

  有很大一部分高考考生,都會(huì)在公布答案之后大呼遺憾,因?yàn)楹芏嗍Х侄际遣粦?yīng)該的,都是不經(jīng)意地疏忽造成的。所以,當(dāng)這種習(xí)慣養(yǎng)成,即便是在緊張的高考場(chǎng)上,也能夠自然而然地以平和的心態(tài)檢查下去,減少不必要的數(shù)學(xué)失分情況出現(xiàn)。

篇14:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

十個(gè)高考數(shù)學(xué)最容易丟分的知識(shí)點(diǎn)

高考數(shù)學(xué)要想拿到高分,掌握平時(shí)考試中的易錯(cuò)點(diǎn)是相當(dāng)重要的,這樣到具體問(wèn)題的時(shí)候,就能做到心中有數(shù),盡量避免。下面是有途網(wǎng)小編為大家整理的十個(gè)高考數(shù)學(xué)最容易丟分的知識(shí)點(diǎn),希望同學(xué)們看后能避免這些錯(cuò)誤。

錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和。基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問(wèn)題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問(wèn)題.這里最容易出現(xiàn)問(wèn)題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。

在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。

如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題。

對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

解題時(shí)要全面考慮問(wèn)題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。

數(shù)列問(wèn)題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。

篇15:高考數(shù)學(xué)核心知識(shí)點(diǎn)精講

數(shù)學(xué)高考知識(shí)點(diǎn)及公式

數(shù)學(xué)公式是人們?cè)谘芯孔匀唤缥锱c物之間時(shí)發(fā)現(xiàn)的一些聯(lián)系,并通過(guò)一定的方式表達(dá)出來(lái)的一種表達(dá)方法。那么高考數(shù)學(xué)里有哪些常見(jiàn)的知識(shí)點(diǎn)呢?下面有途網(wǎng)小編為大家講解一下。

數(shù)學(xué)高考常見(jiàn)的表達(dá)公式

公式表達(dá)式圓的標(biāo)準(zhǔn)方程(x-a)^2+(y-b)^2=r^2 注:(a,b)是圓心坐標(biāo)

圓的一般方程x^2+y^2+Dx+Ey+F=0 注:△=D^2+E^2-4F>0

拋物線標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱側(cè)面積S=c*h 斜棱柱側(cè)面積S=c‘*h

正棱錐側(cè)面積S=1/2c*h’正棱臺(tái)側(cè)面積S=1/2(c+c‘)h’

圓臺(tái)側(cè)面積S=1/2(c+c‘)l=pi(R+r)l 球的表面積S=4π*r2

圓柱側(cè)面積S=c*h=2π*h 圓錐側(cè)面積S=1/2*c*l=π*r*l

弧長(zhǎng)公式l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式s=1/2*l*r

錐體體積公式V=1/3*S*H 圓錐體體積公式V=1/3*pi*r2h

斜棱柱體積V=S’L 注:其中,S‘是直截面面積,L是側(cè)棱長(zhǎng)

柱體體積公式V=s*h 圓柱體V=π*r2h

圖形周長(zhǎng)面積體積公式

長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2 c =2〔a+b〕

正方形的周長(zhǎng)=邊長(zhǎng)×4 c=4a

長(zhǎng)方形的面積=長(zhǎng)×寬s=ab

正方形的面積=邊長(zhǎng)×邊長(zhǎng)s=a2

三角形的面積=底×高÷

數(shù)學(xué)的學(xué)習(xí)是要注意:

1.被動(dòng)學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”.沒(méi)有真正理解所學(xué)內(nèi)容。

2.學(xué)不得法.老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微.

3.不重視基礎(chǔ).一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫(xiě),但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”.

延伸閱讀
搜索教員
主站蜘蛛池模板: 呼和浩特市| 廊坊市| 社会| 遂宁市| 长阳| 龙南县| 环江| 梅河口市| 台湾省| 长兴县| 额济纳旗| 太仆寺旗| 莆田市| 饶阳县| 城口县| 含山县| 炉霍县| 镶黄旗| 建平县| 建阳市| 新绛县| 大宁县| 海晏县| 汉川市| 湘阴县| 体育| 宁津县| 英德市| 巴马| 离岛区| 丰镇市| 东安县| 永平县| 泸定县| 稷山县| 蕉岭县| 天全县| 苍山县| 新竹市| 襄垣县| 阿图什市|