高考數學答題模板攻略
【來源:易教網 更新時間:2024-09-02】
篇1:高考數學答題模板攻略
高考文科數學答題模板
在高考數學復習固然是一個逐漸積累的過程,但掌握一定的數學答題公式和模板將在考試中事半功倍,學會一定的數學答題技巧才能快速提高數學分數,可以說數學萬能答題公式模板是考高分的捷徑。下面有途網小編為大家分享一下高考數學答題模板攻略,希望對你有所幫助。
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
直接法、特殊化法、數形結合法、等價轉化法。
(1)解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
(2)構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sinx,y=cosx的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
(1)解題路線圖
①a化簡變形;b用余弦定理轉化為邊的關系;c變形證明。
②a用余弦定理表示角;b用基本不等式求范圍;c確定角的取值范圍。
(2)構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
(1)解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
(2)構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
(1)解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
(2)構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
(1)解題路線圖
①設方程。
②解系數。
③得結論。
(2)構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
(1)解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
(2)構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果,經驗證成立則肯。定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
(1)解題路線圖
①a標記事件;b對事件分解;c計算概率。
②a確定ξ取值;b計算概率;c得分布列;d求數學期望。
(2)構建答題模板
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
(1)解題路線圖
①a先對函數求導;b計算出某一點的斜率;c得出切線方程。
②a先對函數求導;b談論導數的正負性;c列表觀察原函數值;d得到原函數的單調區間和極值。
(2)構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
篇2:高考數學答題模板攻略
選擇填空題
1.易錯點歸納
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2.答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果,經驗證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變量的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,并列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。
篇3:高考數學答題模板攻略
高考全國卷文科數學答題模板
在高考數學復習固然是一個逐漸積累的過程,但掌握一定的數學答題公式和模板將在考試中事半功倍,學會一定的數學答題技巧才能快速提高數學分數,可以說數學萬能答題公式模板是考高分的捷徑。下面有途網小編為大家分享一下高考全國卷文科數學答題模板,希望對你有所幫助。
年高考全國卷文科數學答題模板
高考數學選擇題速解方法:排除法、假設條件法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;數學填空題速解方法:直接法、特殊化法、數形結合法、等價轉化法。
數學易混淆難記憶考點分析:概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
數學解答題是高考數學試卷中的一類重要題型,通常是高考的把關題和壓軸題。
考察正弦、余弦公式、三角形基本性質、三種基本三角函數之間的轉化與角度的化簡。
三角函數是以角度為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數。常見的三角函數包括正弦函數、余弦函數和正切函數。不同的三角函數之間的關系可以通過幾何直觀或者計算得出,稱為三角恒等式。
答題方法:巧用數形結合、化歸轉化等方法解題。
考察排列、組合運用分布列羅列、期望計算等知識點。
概率所研究的內容一般包括隨機事件的概率、統計獨立性和更深層次上的規律性。對于任何事件的概率值一定介于0和1之間。有一類隨機事件,它具有兩個特點:第一,只有有限個可能的結果;第二,各個結果發生的可能性相同。具有這兩個特點的隨機現象叫做“古典概型”。
考察通項公式和求和公式的運用。
數列是以正整數集(或它的有限子集)為定義域的函數,是一列有序的數。數列中的每一個數都叫做這個數列的項。排在第一位的數稱為這個數列的第1項(通常也叫做首項),排在第二位的數稱為這個數列的第2項……排在第n位的數稱為這個數列的第n項,通常用an表示。
答題方法:通項公式三大解法:和作差,積作商,找規律疊加化簡等;求和公式三大解法:直接公式,錯位相減,分組求和等。四步理清解題思路。
橢圓,雙曲線,拋物線方程的長短軸性質,離心率等,直線與圓錐曲線聯立,求解某點,證明某直線與圓錐曲線的關系等。
答題方法:直接邏輯法:面面,線面,線面垂直平行等性質的運用;空間向量法:線面垂直,平行時用向量如何表達,公式;等面積、體積法:找到最方便計算的圖形。
壓軸題通常為解析幾何和函數導數的題型,難度較大。
答題方法:理清解題思路。
壓軸題通常為解析幾何和函數導數的題型,難度較大。
答題方法:解答壓軸題的解題思路,如復雜問題簡單化、運動問題靜止化、一般問題特殊化等思維方法,以求突破。


最新文章

熱門文章
