黄色视屏在线播放,桃色视频黄在线观看,国产在线观看99,一区二区三区精品免费,国产在线视频在线观看完整版,日韩国产片免费观看,亚洲精品久久久中文字幕九色,亚洲AV日韩AV综合影院,色伦97中文字幕

易教網-北京家教
當前城市:北京 [切換其它城市] 
www.eduease.com 請家教熱線:400-6789-353 010-64435636 010-64450797

易教網微信版微信版 APP下載
易教播報

歡迎您光臨易教網,感謝大家一直以來對易教網北京家教的大力支持和關注!我們將竭誠為您提供更優質便捷的服務,打造北京地區請家教,做家教,找家教的專業平臺,敬請致電:010-64436939

當前位置:家教網首頁 > 家庭教育 > 數學知識點精講與高效學習策略

數學知識點精講與高效學習策略

【來源:易教網 更新時間:2024-10-27
數學知識點精講與高效學習策略

篇1:數學知識點精講與高效學習策略

  高考數學知識點學習方法:學習立體幾何的口訣

  學好立幾并不難,空間想象是關鍵。點線面體是一家,共筑立幾百花園。

  點在線面用屬于,線在面內用包含。四個公理是基礎,推證演算巧周旋。

  空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進空間。

  判定線和面平行,面中找條平行線。已知線與面平行,過線作面找交線。

  要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。

  已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。

  判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。

  兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過另面一垂線。

  面面垂直成直角,線面垂直記心間。

  一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風采顯。

  空間距離和夾角,平行轉化在平面,一找二證三構造,三角形中求答案。

  引進向量新工具,計算證明開新篇。空間建系求坐標,向量運算更簡便。

  知識創新無止境,學問思辨勇攀登。

  多面體和旋轉體,上述內容的延續。扮演載體新角色,位置關系全在里。

  算面積來求體積,基本公式是依據。規則形體用公式,非規形體靠化歸。

  展開分割好辦法,化難為易新天地。

  高考數學知識點大全學習方法:方法總結一

  方法一、調理大腦思緒,提前進入數學情境

  考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考。

  方法二、“內緊外松”,集中注意,消除焦慮怯場

  集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

  方法三、沉著應戰,確保旗開得勝,以利振奮精神

  良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然后穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。

  方法四、“六先六后”,因人因卷制宜

  在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行“六先六后”的戰術原則。

  1、先易后難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

  2、先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之后,就可實施先熟后生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

  3、先同后異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,

  4.先小后大。小題一般是信息量少、運算量小,易于把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基矗

  5.先點后面。近年的高考數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為后面問題準備了思維基礎和解題條件,所以要步步為營,由點到面6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。

  方法五、一“慢”一“快”,相得益彰

  有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急于解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。

  高考數學知識點大全學習方法二

  方法六、確保運算準確,立足一次成功

  數學高考題的容量在120分鐘時間內完成大小26個題,時間很緊張,不允許做大量細致的解后檢驗,所以要盡量準確運算(關鍵步驟,力求準確,寧慢勿快),立足一次成功。解題速度是建立在解題準確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟,假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

  方法七、講求規范書寫,力爭既對又全

  考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。

  方法八、面對難題,講究方法,爭取得分

  會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。

  1、缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。

  2、跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。

  方法九、以退求進,立足特殊,發散一般

  對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發思維,達到對“一般”的解決。

  方法十、執果索因,逆向思考,正難則反

  對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。   方法十一、回避結論的肯定與否定,解決探索性問題

  對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。   方法十二、應用性問題思路:面—點—線

  解決應用性問題,首先要全面調查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數據,此為“點”;綜合聯系,提煉關系,依靠數學方法,建立數學模型,此為“線”,如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。

篇2:數學知識點精講與高效學習策略

  一、高中數學與初中數學特點的變化

  1、數學語言在抽象程度上突變

  初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。

  2、思維方法向理性層次躍遷

  高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

  3、知識內容的整體數量劇增

  高中數學與初中數學又一個明顯的不同是知識內容的“量”上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。

  4、知識的獨立性大

  初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便于記憶,又適合于知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。

  二、如何學好高中數學

  1、養成良好的學習數學習慣。

  建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

  2、及時了解、掌握常用的數學思想和方法

  學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

  解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

  3、逐步形成“以我為主”的學習模式

  數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足于現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

  4、針對自己的學習情況,采取一些具體的措施

  2記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中

  拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  2建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再

  犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  2熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化

  或半自動化的熟練程度。

  2經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,

  使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納于同一知識方法。

  2閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課

  外題,加大自學力度,拓展自己的知識面。

  2及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏

  固,消滅前學后忘。

  2學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解

  題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網絡化。

  2經常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學

  思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

  2無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而

  不是一味地去追求速度或技巧,這是學好數學的重要問題。

篇3:數學知識點精講與高效學習策略

  沒有好的高一,必然沒有好的高考;沒有高一的危機感和緊迫感,就沒有高三的從容自信!

  1.集合的含義及表示

  1、集合的含義

  一般地,我們把研究對象統稱為元素,把一些元素組成的總體叫做集合。

  2、集合的中元素的三個特性

  (1)元素的確定性;

  (2)元素的互異性;

  (3)元素的無序性

  3、“屬于”的概念

  我們通常用大寫的拉丁字母A,B,C, ??表示集合,用小寫拉丁字母a,b,c, ??表示元素 如:如果a是集合A的元素,就說a屬于集合A 記作 a∈A,如果a不屬于集合A 記作 a?A

  4、常用數集及其記法

  非負整數集(即自然數集)記作:N;正整數集記作:N*或 N+ ;整數集記作:Z;有理數集記作:Q;實數集記作:R

  5、集合的表示法

  (1)列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  (2)描述法:用集合所含元素的公共特征表示集合的方法稱為描述法。

  ①語言描述法:例:{不是直角三角形的三角形}

  ②數學式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}

  (3)圖示法(Venn圖)

  【重點】集合的基本概念和表示方法

  【難點】運用集合的三種常用表示方法正確表示一些簡單的集合

  2.函數

  1、函數的概念

  設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

  注意:如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.

  2、定義域補充

  能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1;

  (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合;

  (6)指數為零底不可以等于零;

  (7)實際問題中的函數的定義域還要保證實際問題有意義.

  注意:求出不等式組的解集即為函數的定義域。

  構成函數的三要素:定義域、對應關系和值域

  注意:

  (1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數);

  (2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。

  相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)

  值域補充

  (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.

  (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

  高一數學學習方法

  先看筆記后做作業。有的高中學生感到。老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

  做題之后加強反思。學生一定要明確,現在正坐著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網絡系統。

  配合老師主動學習。高中學生學習主動性要強。小學生,常常是完成作業就盡情的歡樂。初中生基本也是如此,聽話的孩子就能學習好。高中則不然,作業雖多,但是只知道做作業就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明,因此,高中學生必須提高自己的學習主動性。準備向將來的大學生的學習方法過渡。

  課內重視聽講,課后及時復習。新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復5 習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡。

  建立良好的學習數學習慣。習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。適當多做題,養成良好的解題習慣。

篇4:數學知識點精講與高效學習策略

  一.算法,概率和統計

  1.算法初步(約12課時)

  (1)算法的含義、程序框圖

  ①通過對解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會算法的思想,了解算法的含義。

  ②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。

  (2)基本算法語句

  經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句--輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會算法的基本思想。

  (3)通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

  3.概率(約8課時)

  (1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。

  (2)通過實例,了解兩個互斥事件的概率加法公式。

  (3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。

  (4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。

  (5)通過閱讀材料,了解人類認識隨機現象的過程。

  2.統計(約16課時)

  (1)隨機抽樣

  ①能從現實生活或其他學科中提出具有一定價值的統計問題。

  ②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。

  ③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。

  ④能通過試驗、查閱資料、設計調查問卷等方法收集數據。

  (2)用樣本估計總體

  ①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點。

  ②通過實例理解樣本數據標準差的意義和作用,學會計算數據標準差。

  ③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并作出合理的解釋。

  ④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特征估計總體的基本數字特征;初步體會樣本頻率分布和數字特征的隨機性。

  ⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。

  ⑥形成對數據處理過程進行初步評價的意識。

 

篇5:數學知識點精講與高效學習策略

  1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.

  2、對于函數的概念,應注意如下幾點:

  (1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數.

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數.

  3、求函數y=f(x)的反函數的一般步驟:

  (1)確定原函數的值域,也就是反函數的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函數的習慣表達式y=f-1(x),并注明定義域.

  注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起.

  ②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算.

篇6:數學知識點精講與高效學習策略

  冪函數是什么呢?有不少同學恐懼數學,歸根結底是恐懼一個知識點,那就是“冪函數”。歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然后提出猜想的推理,稱為合情推理。掌握冪函數的內部規律及本質是學好冪函數的關鍵所在。

  定義:

  形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

  定義域和值域:

  當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

  性質:

  對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

  排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

  總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:

  如果a為任意實數,則函數的定義域為大于0的所有實數;

  如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

  在x大于0時,函數的值域總是大于0的實數。

  在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

  而只有a為正數,0才進入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

  可以看到:

  (1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

  (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

  (6)顯然冪函數無界。

延伸閱讀
搜索教員
主站蜘蛛池模板: 渭源县| 江安县| 类乌齐县| 永吉县| 彝良县| 新民市| 潞城市| 莱西市| 合水县| 洛浦县| 红桥区| 温州市| 江源县| 洱源县| 琼结县| 临颍县| 民和| 上饶县| 甘南县| 渑池县| 克什克腾旗| 合肥市| 福建省| 车险| 蕉岭县| 东莞市| 五华县| 沭阳县| 平凉市| 波密县| 天长市| 花垣县| 陈巴尔虎旗| 南康市| 亚东县| 曲水县| 贞丰县| 南充市| 赣榆县| 承德县| 柳江县|